

Measurement of the top quark mass in the lepton + jets channel at D0 using the ldeogram Method

Pieter Houben

APS April 15, 2007

Pieter Houben, NIKHEF 1 APS, April 15, 2007

Event selection

event selection

- One isolated lepton
 with p_T > 20 GeV and
 lη l < 2.0 (muons) or 1.1 (electrons)
- £_T > 20 GeV
- ≥ 4 jets with p_T > 20 GeV and $|\eta|$ < 2.5
- A $\Delta \phi$ cut between the $\not\! E_T$ and the charged lepton

	<u>e+jets</u>	<u>μ+jets</u>
tt	61.5 ± 7.9	45.6 ± 7.5
W+jets	35.6 ± 5.2	63.0 ± 6.9
QCD	18.9 ± 2.7	5.4 ± 0.6
total observed 116 114		

RunII sample with $L_{integrated} = 425 \text{ pb}^{-1}$

- Number of b tags
- aplanarity
- **E**_T
- $H'_{T2} = H_{T2} / H_{\parallel}$
- K'_{T min}
- An event quality variable combining track and jet information

Kinematic fit

measured variables:

4 jet energies, 4 jet directions lepton energy, lepton direction $\not\!\!E_T$ and the direction of the $\not\!\!E_T$

- fit tt hypothesis to these kinematic variables
- Constraints: both W masses are constrained to the known W mass.
 Both top masses are required to be the same. This gives a 2 constraints fit.
- per jet-parton assignment: m_t , σ_t a χ^2

- · Divide all jet energies by an overall JES factor: JES.
- The kinematic fit is best (lowest χ^2) at JES at which the reconstructed W mass is closest to 80.4 GeV.

Ideogram Method

Compute an event likelihood of three variables: m_t , JES, and f_{top} :

$$\mathcal{L}_{\text{evt}}(m_t, JES, f_{\text{top}}) = f_{\text{top}} \cdot P_{\text{sgn}}(m_t, JES) + (1 - f_{\text{top}}) \cdot P_{\text{bkg}}(JES)$$

$$P_{\mathrm{Sgn}}(m_t, JES) = P_{\mathrm{Sgn}}(D)P_{\mathrm{Sgn}}(\mathrm{fit}; m_t, JES)$$
 (same for BG)

$$P_{\text{sgn}}(\text{fit}; m_t, JES) =$$

$$P_{\text{bkg}}(\text{fit}; JES) = \sum_{i=1}^{24} w_i \cdot \mathbf{BG}(m_i)$$

$$\sum_{i=1}^{24} w_i \left\{ \int \mathbf{G}(m_i, m', \sigma_i) \cdot \mathbf{BW}(m', m_t) dm' + \mathbf{S}_{\text{Wrong}}(m_i, m_t) \right\}$$

$$e^{-\frac{1}{2}\chi_i^2} \cdot \text{Prob}_{b\text{-tagging}}$$

Total likelihood is the product of the event likelihoods $\mathcal{L}_{\text{samp}}(m_t, JES, f_{\text{top}}) = \prod_j \mathcal{L}_{\text{evt}_j}(m_t, JES, f_{\text{top}})$

Ensemble tests

Pseudo-experiments to determine the estimated uncertainty, the calibration, and the pull width using Pythia tt MC and Alpgen W+jets MC.

Result

$$m_t (I+jets) = 173.7 \pm 4.4 (stat)_{-2.0}^{+2.1} (sys) GeV$$

 $JES = 0.989 \pm 0.029 (stat. only)$

Systematic uncertainties

The systematic uncertainties (in GeV):

jet energy scale (p _T dependence	e) 0.45
jet ID efficiency and resolution	0.22
b fragmentation	1.30
b response	1.15
b tagging	0.29
trigger uncertainty	+0.61 -0.28
signal modeling	0.73
signal fraction	0.12
background modeling	0.20
QCD background	0.28
MC calibration	0.25
PDF uncertainty	0.02

total systematic uncertainty = +2.10 -2.04 GeV

Conclusions

- The ideogram method is well capable of reconstructing a top mass from a data sample
- Inclusing b-tagging has greatly improved the method.
- Including a JES factor taken from the hadronic W boson, shifts a systematic uncertainty to the statistical uncertainty and significantly reduces the total uncertainty.
- The fitted JES factor is compatible with the external photon-jet jet energy scale.
- Applied on a 425 pb⁻¹ dataset the ideogram method finds a top mass of

$$m_t = 173.7 \pm 4.4 \text{ (stat)}^{+2.1}_{-2.0} \text{(sys) GeV}$$

- Analysis submitted to PRD.
- We are working on an updated analysis on a larger dataset.